Classical Solutions of The Hamilton-Jacobi-Bellman Equation for Uniformly Elliptic Operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geometry of the Hamilton-jacobi-bellman Equation

We show how a minimal deformation of the geometry of the classical Hamilton-Jacobi equation provides a probabilistic theory whose cornerstone is the Hamilton-Jacobi-Bellman equation. This is the basis for a novel dynamical system approach to Stochastic Analysis. 1. Stochastic deformation of classical dynamical systems. The geometrical study of the Hamilton-Jacobi theory lies at the heart of Ana...

متن کامل

Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation

In this paper we study the convergence of the Galerkin approximation method applied to the Generalized Hamilton-Jacobi-Bellman (GHJB) equation over a compact set containing the origin. The GHJB equation gives the cost of an arbitrary control law and can be used to improve the performance of this control. The GHJB equation can also be used to successively approximate the Hamilton-Jacobi-Bellman ...

متن کامل

Hamilton-Jacobi-Bellman Equations

This work treats Hamilton-Jacobi-Bellman equations. Their relation to several problems in mathematics is presented and an introduction to viscosity solutions is given. The work of several research articles is reviewed, including the Barles-Souganidis convergence argument and the inaugural papers on mean-field games. Original research on numerical methods for Hamilton-Jacobi-Bellman equations is...

متن کامل

Sobolev Weak Solutions of the Hamilton-Jacobi-Bellman Equations

This paper is concerned with Sobolev weak solution of Hamilton-Jacobi-Bellman (HJB) equation. This equation is derived from the dynamic programming principle in the study of the stochastic optimal control problem. Adopting Doob-Meyer decomposition theorem as one of main tool, we prove that the optimal value function is the unique Sobolev weak solution of the corresponding HJB equation. For the ...

متن کامل

Numerically Eecient Approximations to the Hamilton-jacobi-bellman Equation

In this paper we present an implementation of the Successive Galerkin Approximation (SGA) algorithm to the Hamilton-Jacobi-Bellman (HJB) equation which is less sensitive to Bellman's curse of dimensionality. The SGA algorithm takes an arbitrary stabilizing control law and improves the performance of the control law. Until now the SGA algorithm could only be applied to low order systems. An elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1983

ISSN: 0002-9947

DOI: 10.2307/1999016